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Invariance Theorems in Approximation Theory
and their Applications

Michael I. Ganzburg

Abstract. Let B be a closed linear subspace of a Banach space F and let {Ts}s∈G be
a group of continuous linear operators Ts : F → F , where G is a compact topological
group. We prove that if f ∈ F is invariant under {Ts}s∈G , then under some conditions
on f , F , B, and G, there exists an element g∗ ∈ B of best approximation to f that has
the same property. As applications, we compute the bivariate Bernstein constant for L1

polynomial approximation of |x |λ and solve a Braess problem on the exponential order
of decay of the error of polynomial approximation of |x − a|−λ. Other examples and
applications are discussed as well.

1. Introduction

Let F be a Banach space with the norm ‖ · ‖F and let B be a closed linear subspace of
F . We denote the error of best approximation of an element f ∈ F by elements from B
by

E( f, B, F) := inf
g∈B
‖ f − g‖F .

We say that g0 = g0( f ) ∈ B is an element of best approximation to f ∈ F (or a best
approximation of f ∈ F) if E( f, B, F) = ‖ f − g0‖F .

Let G be a topological group and let {Ts}s∈G be a group of continuous linear operators
Ts : F → F , s ∈ G, i.e., Te = I , Tst = Ts Tt , s ∈ G, t ∈ G, where e is the identity
element of G and I is the identity operator. We denote by FG the set of all elements
f ∈ F satisfying the condition Ts f = f for all s ∈ G. In other words, FG is the
subspace of F of all f which are invariant under the group of operators {Ts}s∈G .

In this paper we discuss conditions on G, {Ts}s∈G , F , and B that guarantee the impli-
cation

f ∈ FG ⇒ E( f, B, F) = E( f, B ∩ FG, F).(1.1)

In addition, if there exists a best approximation of f ∈ FG , then under these conditions
there exists a best approximation of f which is invariant under {Ts}s∈G . These results
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play a significant role in approximation theory, especially in multivariate approximation,
because application of invariance theorems to multivariate problems often allows their
reduction to univariate ones.

Invariance theorems like (1.1) are typically applied to a group of continuous operators
Tsψ(x) = ψ(sx), s ∈ Gm , where Gm is a compact group of continuous transformations
s : �m → �m on a subset�m of the m-dimensional Euclidean space Rm and ψ belongs
to a Banach space F of functions defined on �m . In this case, we say that FGm is the
subspace of all functions which are invariant under Gm .

It is well known that polynomials of best approximation to an even function on a
symmetric set about the origin �m ⊆ Rm are even as well. In other words, if f is
invariant under the group Gm = {−e, e}, where e is the identity transformation on �m ,
then polynomials of best approximation to f inherit the same property. The author and
Pichugov [23] extended this result to a general situation of a compact group of operators.

Theorem 1.1. Let G be a compact group and let a closed subspace B of F and {Ts}s∈G

satisfy the following conditions:

(1) for all g ∈ B and all s ∈ G, Ts g ∈ B;
(2) for every g ∈ B, Ts g is continuous in s as a function from G to B; and
(3) ‖Ts‖F→F = 1, s ∈ G.

Then, for f ∈ FG ,

E( f, B, F) = E( f, B ∩ FG, F).(1.2)

Some special cases of the theorem were recently discussed in [2]. Andreev and Yudin
[2], Xu [47], the author and Pichugov [23], and the author [17], [19] applied Theorem
1.1 to various problems of multivariate approximation.

Meinardus [28], [29, pp. 26–27] (see also Braess [9, pp. 4 and 195]) and Smoluk [38]
developed a different approach to invariance theorems. Under some conditions on F ,
B and a linear operator A : F → F with ‖A‖F→F ≤ 1, they showed that if f ∈ F
satisfies A f = f , and if there exists an element g0 ∈ B of best approximation to f , then
there exists an element g∗ ∈ B of best approximation to f such that Ag∗ = g∗. Since an
efficient choice of A is possible only for some elementary examples, these results have
not found interesting applications in approximation theory.

In this paper we establish new invariance theorems and apply them to some problems
of approximation theory. The paper is organized as follows.

In Section 2 we first establish a different form of Theorem 1.1, which provides addi-
tional information on the existence of elements of best approximation (Theorem 2.1).
Next, we introduce additional notation and discuss invariance theorems in function spaces
with applications to approximation by trigonometric and algebraic polynomials and en-
tire functions of exponential type in rearrangement-invariant spaces such as L p(�m),
C(�m), and also Lorentz, Marcinkewicz, and Orlicz spaces (Theorem 2.2 and Examples
2.2 and 2.3).

In Sections 4–6 we establish strengthened invariance theorems for approximation
by algebraic polynomials and entire functions of exponential type finding the minimal
system of homogeneous generators of the algebra B ∩ FG for some groups of linear
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transformations of �m ⊆ Rm (Theorems 4.1, 5.1, 5.2, and 6.1). In addition, Sections
3–7 contain examples and applications of invariance theorems to several problems of
univariate and multivariate approximation. In particular, in Section 3, classical estimates
for coefficients of univariate trigonometric polynomials in the uniform and L p, 1 ≤
p <∞,metrics are extended to a shift-invariant Banach space of 2π -periodic functions
(Theorem 3.1).

In Sections 4 and 6 we discuss approximation of radial functions by algebraic poly-
nomials and entire functions of exponential type. As an application, we compute the
L1-errors of best approximation of the function fλ(x) := |x |λ in the bivariate case (The-
orems 4.2 and 6.2). We also find the bivariate Bernstein constant for L1-approximation.
Note that the problem of univariate polynomial approximation of |x |λ has attracted much
attention since the 1910s [4], [6], [31], [34], [35], [45], [20] and revisited recently in
[22], [27], [24]. A criterion for the existence of the multivariate Bernstein constant was
given in [16]. We show in Sections 4 and 6 that, for λ > 0, λ �= 2, 4, . . .,

lim
n→∞ nλ+2 E( fλ,Pn,2, L1(V2)) = E( fλ, BV2 , L1(R2))(1.3)

= 8|sin(πλ/2)|�(λ+ 2)
∞∑

k=0

(2k + 1)−λ−3,

where V2 is the unit ball in R2, Pn,2 is the set of bivariate polynomials of degree at most
n, and BV2 is the set of all bivariate entire functions of exponential type with the spectra
in V2.

Polynomial approximation on the unit ball Vm and the unit sphere Sm−1 in Rm is dis-
cussed in Section 5. As an application, we solve a Braess problem [10] on the exponential
order of decay of E( fλ,a,2,Pn,2,C(V2)), where fλ,a,m(x) := |x−a|−λ, x ∈ Rm, a ∈ Rm ,
λ > 0, and |a| > 1. In addition, we extend this result to fλ,a,m , m ≥ 2, λ ∈ R1,
λ �= 0,−2, . . ., a ∈ Rm , and to the function log |x−a|. In particular, for |a| > 1, m ≥ 2,
and λ ∈ R1, λ �= 0,−2, . . ., we prove the following inequalities (Theorem 5.3):

C1(|a|, λ)nλ/2−1|a|−n ≤ E( fλ,a,m,Pn,m,C(Vm)) ≤ C2(|a|, λ)nµ−1|a|−n,

where µ :=
{
λ, λ > 0,
λ/2, λ < 0.

Note that Braess [10] established weaker estimates under

the conditions m = 2 and either |a| ≥ 3, λ > 0 or |a| > 1, 0 < λ < 2. We also prove
the following estimates for m ≥ 2, λ < 0, and 0 ≤ |a| ≤ 1:

C3(|a|, λ)n−λ ≤ E( fλ,a,m,Pn,m,C(Vm)) ≤ C4(|a|, λ)n−λ,(1.4)

which are surprising for |a| = 1 since for m = 1 and |a| = 1, the lower estimate in (1.4)
is not valid.

In Section 7 we show that if a continuous function f ∈ C(Rm) depends only on the
variables x1, . . . , xk , 1 ≤ k < n, then there exists an entire function of exponential type
of best uniform approximation to f that has the same property.

Throughout the paper C is a positive constant independent of essential parameters and
C(q1, . . . , qd), C1(q1, . . . , qd), C2(q1, . . . , qd), . . . denote positive constants that depend
only on the parameters q1, . . . , qd . The same symbol does not necessarily denote the same
constant in different occurrences. In addition, throughout the paper Cm := Rm + iRm is
the m-dimensional complex space, and [x] denotes the largest integer n such that n ≤ x .
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2. Invariance Theorems for Banach Spaces

An Invariance Theorem for Compact Groups. The following invariance theorem
holds.

Theorem 2.1. Let G be a compact group and let a closed subspace B of a Banach
space F and {Ts}s∈G satisfy the following conditions:

(1) for all g ∈ B and all s ∈ G, Ts g ∈ B;
(2) for every g ∈ B, Ts g is continuous in s as a function from G to B; and
(3) ‖Ts‖F→F = 1, s ∈ G.

If there exists an element g0 ∈ B of best approximation to f ∈ FG , then there exists an
element g∗ ∈ B of best approximation to f which is invariant under {Ts}s∈G .

Proof. Since G is compact, there exists the Haar measure µ(s) on G with µ(G) = 1.
Then condition (2) implies the existence of the integral

g∗ :=
∫

G
Ts g0 dµ(s)(2.1)

(see [37, Theorem 3.27]). Moreover, since B is a closed subspace of F , condition (1)
shows that g∗ ∈ B [37, Theorem 3.27]. Next, for any t ∈ G, we have

Tt g
∗ =

∫
G

Tt Ts g0 dµ(s) =
∫

G
Ts g0 dµ(s) = g∗,

where the first equality is proved in [12, Theorem 3.2.19(c)] and the second one follows
from the invariance of the Haar measure. Therefore, g∗ ∈ B ∩ FG . Finally, using the
generalized Minkowski inequality and condition (3), we obtain, for f ∈ FG ,

‖ f − g∗‖F =
∣∣∣∣
∣∣∣∣
∫

G
Ts( f − g0) dµ(s)

∣∣∣∣
∣∣∣∣

F

≤
∫

G
‖Ts( f − g0)‖F dµ(s)

≤ ‖ f − g0‖F = E( f, B, F).

This completes the proof of the theorem.

Remark 2.1. The proof of Theorem 2.1 is similar to that of Theorem 1.1 and is based
on the existence of integral (2.1) in the case of a compact group G. In the case of a
locally compact group G, integral (2.1) in general does not exist so the construction of
an element g∗ ∈ B∩FG of best approximation to f ∈ FG is more technical and requires
more conditions on G and {Ts}s∈G . The corresponding general result will be discussed
in other paper; however, an example of invariance theorems for locally compact groups
is presented in Section 7.

Remark 2.2. It is possible to generalize Theorems 1.1 and 2.1 in the following way. Let
h : G → {−1, 1} be a continuous homomorphism from a group G to the group {−1, 1}. If
a group of operators {Ts}s∈G satisfies the conditions of Theorems 1.1 or 2.1, then the group
of operators {h(s)Ts}s∈G satisfies the same conditions. Therefore, by these theorems, if
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f ∈ FG
h := {g ∈ F : g = h(s)Ts g, s ∈ G}, then E( f, B, F) = E( f, B ∩ FG

h , F), and
if there exists an element g0 ∈ B of best approximation to f ∈ FG

h , then there exists an
element g∗ ∈ B of best approximation to f which is invariant under {h(s)Ts}s∈G .

These results are formally stronger than Theorems 1.1 and 2.1, which follow for
h(s) = 1, s ∈ G. In addition, these statements give a wide generalization of the well-
known result that polynomials of best approximation to an odd function on a symmetric
set about the origin �m ⊆ Rm are odd as well. A different generalization of this result
was established in [28], [29, Theorem 2.7].

Existence of Elements of Best Approximation. Here, we discuss some conditions on
B that guarantee the existence of g0 ∈ B in Theorem 2.1. It is well known that if B is
a finite-dimensional or approximately compact subspace, then for every f ∈ F there
exists an element g0 ∈ B of best approximation to f [43, p. 28], [14]. Below we define
two other generalized compactness conditions (GCC and GCC*) on B, which are more
suitable for our applications, and study their properties.

Definition 2.1. We say that a subspace B of a normed space F satisfies the GCC if
there exists a sequence of semi-norms {‖ · ‖F,p}∞p=1 in F such that, for every f ∈ F ,

sup
p
‖ f ‖F,p = ‖ f ‖F ,(2.2)

and for every sequence gn ∈ B, n = 1, 2, . . ., with supn ‖gn‖F < ∞, there exist a
subsequence {gnk }∞k=1 and an element g∗ ∈ B satisfying the relation

lim
k→∞
‖g∗ − gnk‖F,p = 0, p = 1, 2, . . . .(2.3)

Definition 2.2. We say that a subspace B of a normed space F satisfies the GCC∗ if, for
every sequence gn ∈ B, n = 1, 2, . . ., with supn ‖gn‖F <∞, there exist a subsequence
{gnk }∞k=1 and an element g∗ ∈ B such that for all f ∈ F , the following inequality holds:

‖ f − g∗‖F ≤ lim inf
k→∞

‖ f − gnk‖F .(2.4)

Remark 2.3. It is well known that B satisfies the GCC with ‖ f ‖F,p := ‖ f ‖F , p =
1, 2, . . . , f ∈ F , if and only if B is a finite-dimensional space [37, Theorem 1.22].
Examples of subspaces of infinite dimension, satisfying the GCC, will be discussed in
Remark 2.5.

The following statement shows that the GCC∗ is a weaker condition than the GCC.

Proposition 2.1. If a subspace B of a normed space F satisfies the GCC, then B
satisfies the GCC∗.

Proof. Let B satisfy the GCC and let {gn}∞n=1 be a bounded sequence in B. Then, by
Definition 2.1, there exist a subsequence {gnk }∞k=1 and g∗ ∈ B such that (2.3) holds.
Consequently, taking account of (2.2), we obtain, for every f ∈ F ,

‖ f − g∗‖F = sup
p
‖ f − g∗‖F,p ≤ sup

p
lim inf

k→∞
‖ f − gnk‖F,p ≤ lim inf

k→∞
‖ f − gnk‖F .

Therefore, the GCC∗ is satisfied with g∗ and {gnk }∞k=1 from the GCC.
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Next we prove that both conditions guarantee the existence of an element of best
approximation to any f ∈ F .

Proposition 2.2. If B satisfies either the GCC or GCC∗, then for every f ∈ F there
exists g∗ ∈ B satisfying E( f, B, F) = ‖ f − g∗‖F .

Proof. Due to Proposition 2.1, it suffices to prove the proposition in the case when B
satisfies the GCC∗. Let f ∈ F and let gn ∈ B satisfy the inequality

‖ f − gn‖F < E( f, B, F)+ n−1, n = 1, 2, . . . .

Then supn ‖gn‖F ≤ 2‖ f ‖F +1 and, by the GCC∗, there exist g∗ ∈ B and a subsequence
{gnk }∞k=1 such that (2.4) holds. This implies that ‖ f − g∗‖F ≤ E( f, B, F). Therefore,
g∗ is an element of best approximation to f .

Further, we discuss special cases of Theorem 2.1 for Banach function spaces.

Groups, Spaces, Subspaces, and Sets. All our examples are special cases of the
following situation.

Let F be a Banach space of functions defined on a subset �m of the m-dimensional
Euclidean space Rm and let G = Gm be a compact group of transformations s : �m →
�m with the identity transformation e. In the capacity of Ts , we consider either Tsψ(x) =
ψ(sx) or Tsψ(x) = h(s)ψ(sx),ψ ∈ F , where sx is the image of x ∈ �m and h : Gm →
{−1, 1} is a continuous homomorphism from Gm to the group {−1, 1} (see Remark 2.2).
In the case Tsψ(x) = ψ(sx) and f ∈ FGm , we say that f is invariant under Gm .

We assume that the norm in F is invariant under Gm , that is, for all f ∈ F and all
s ∈ Gm , the equality ‖ f (s·)‖F = ‖ f ‖F holds, which implies ‖Ts‖F→F = 1, s ∈ Gm .
In particular, F is invariant under Gm when F = F(�m) is a Banach rearrangement-
invariant space of measurable functions on a closed set �m ⊆ Rm [13, Sec. 2.2], [26,
Sec. 2.4] and Gm is a group of measure-preserving transformations such as linear trans-
formations sx = A(s)x + x∗(s), where A(s) is an m × m matrix with |det A(s)| = 1
and x∗(s) ∈ Rm , s ∈ Gm .

Examples of such spaces include the space C(�m) of all continuous functions on
�m with the finite norm ‖ f ‖C(�m ) := sup�m

| f |; the space L p(�m), 1 ≤ p < ∞, of
all measurable on �m functions with the finite norm ‖ f ‖L p(�m ) := (

∫
�m
| f |p dx)1/p;

and also Lorentz spaces Lψ(�m), Marcinkiewicz spaces Mψ(�m), and Orlicz spaces
Oψ(�m) [13, Sec. 2.2], [26, Sec. 2.5]. In the univariate case, we use notation C[a, b] :=
C([a, b]), L p[a, b] := L p([a, b]).

Let Zm be a set of all vectors α = (α1, . . . , αm) with integral coordinates, |α| :=∑m
j=1 αj , Zm

+ = {α ∈ Zm : αj ≥ 0, 1 ≤ j ≤ m}, Tm the m-dimensional torus, and let V
be a convex centrally symmetric (with respect to the origin) body in Rm .

In our examples and applications, we discuss the following traditional subspaces
of algebraic and trigonometric polynomials and entire functions of exponential type
in classic approximation theory. Let Pn,m be the set of all algebraic polynomials
P(x) = ∑

α∈Zm
+, |α|≤n cαxα1

1 . . . xαm
m in m variables with real coefficients of degree

at most n and TV the set of all real-valued trigonometric polynomials
T (x) =∑α∈V∩Zm cα exp(−i

∑m
j=1 αj xj ) of m variables with their spectra in V .
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Finally, let BV be the set of all real-valued entire functions g of exponential type in m
variables satisfying the inequality

|g(z)| ≤ C(ε, g) exp

(
(1+ ε) sup

t∈V
|(t, z)|

)

for all z = (z1, . . . , zm) ∈ Cm and any ε > 0 (see [39, Sec. 3.4]); here, (t, z) :=∑m
j=1 tj z j . In particular, for m = 1, V is a closed interval [−σ, σ ] and we set Bσ :=

B[−σ,σ ], σ > 0. It is clear that TV ⊆ BV .
Throughout the paper we shall use the following groups Gm and sets �m .
Let D(m) be the group of all rotations (about the origin) of Rm . We identify D(m)

with the group of all m × m orthogonal matrices which is isomorphic to D(m) since
s ∈ D(m) if and only if sx = A(s)x , where A(s) is an m × m orthogonal matrix with
|det A(s)| = 1.

Let D(m, a) be the group of all rotations (or m ×m orthogonal matrices) s satisfying
the condition sa = a, where a �= 0 is a fixed vector from Rm . For example, if a =
(cos γ, sin γ ), then D(2, a) = {I, Aγ }, where I is the 2× 2 identity matrix and Aγ :=[

cos 2γ sin 2γ
sin 2γ −cos 2γ

]
.

Next, let Vm(ρ) := {x ∈ Rm : |x | ≤ ρ} be the ball of radius ρ, Vm := Vm(1) the unit
ball in Rm , and Sm−1 = {x ∈ Rm : |x | = 1} the unit (m − 1)-dimensional sphere in Rm ,
m ≥ 2. Finally, note that χ� denotes the characteristic function of a set �.

Remark 2.4. Throughout the paper polynomial approximation on �m ⊂ Rm means
approximation by the restrictions of polynomials to �m .

An Invariance Theorem in Banach Function Spaces. In the case of Banach function
spaces, condition (2) in Theorem 2.1 can be replaced by a simpler condition. Let�m , Gm ,
and Ts be defined as in the previous subsection. Then the following invariance theorem
for a Banach function space F holds.

Theorem 2.2. Let Gm be a compact group of transformations on �m ⊆ Rm and let F
be a Banach function space with the norm invariant under Gm . In addition, let a closed
subspace B of F and Gm satisfy the conditions:

(1) for all g ∈ B and all s ∈ G, g(s·) ∈ B;
(2′) for every g ∈ B and each x ∈ �m , the linear functional g(sx) : Gm → R1 is

continuous in s ∈ Gm ;
(3) ‖Ts‖F→F = 1, s ∈ G; and
(4) B satisfies the GCC (see Definition 2.1).

If f ∈ FGm , then there exists a function g∗ ∈ B of best approximation to f which is
invariant under {Ts}s∈Gm .

Proof. Let Ts be defined by Tsψ(x) = ψ(sx) or Tsψ(x) = h(s)ψ(sx), where ψ ∈ F ,
s ∈ Gm , x ∈ �m , and h : Gm → {−1, 1} is a continuous homomorphism from Gm to
the group {−1, 1}. Next, by condition (4) and Proposition 2.2, there exists an element
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g0 ∈ B of best approximation to f . Further, by condition (2′), Ts g0(x) is continuous
as a function from Gm to R1 for each x ∈ �m , that is, Ts g0 ∈ C(Gm). Since Gm is a
compact group, there exists the only Haar measure µ(s) on Gm with µ(Gm) = 1 such
that the integral g∗(x) := ∫

Gm
Ts g0(x) dµ(s) exists [37, Theorem 5.14]. In addition,

g∗ ∈ B by [37, Theorem 3.27], and the proof of the relations g∗ ∈ B ∩ FGm and
E( f, B, F) = ‖ f − g∗‖F is similar to that of Theorem 2.1.

The following example shows that in some cases condition (2′) in Theorem 2.2 is less
restrictive than condition (2) in Theorem 2.1.

Example 2.1. Let m = 2, F = C(R2), �2 = R2, B = BQ ∩ C(R2), where Q :=
{x = (x1, x2) ∈ R2 : |x1| ≤ 1, |x2| ≤ 1} is the unit square, and let G2 be the group of all
proper rotations s of R2 about the origin through angle γ ∈ [0, 2π), that is, sx = Aγ x
with

Aγ =
[

cos γ −sin γ
sin γ cos γ

]
, γ ∈ [0, 2π).

For any entire function g ∈ BQ ∩ C(R2) of exponential type, the function

g(sx) = g(x1 cos γ − x2 sin γ, x1 sin γ + x2 cos γ )

is continuous in γ ∈ [0, 2π) for each fixed x ∈ R2. Thus condition (2′) is satisfied. Next
we show that g1(sx) is not continuous in γ as a function from G2 to BQ ∩C(R2), where
g1(x) := sin x1 sin x2 ∈ BQ ∩ C(R2).

Let us set

up := 2(5p + 1), γ (p) := arccos
u2

p − 1

u2
p + 1

= arcsin
2up

u2
p + 1

,

0 ≤ γ (p) ≤ π/2, p = 0, 1, . . . .

Then u2
p + 1 is divisible by 5 and we set kp := (u2

p + 1)/5. Further, setting x1(p) =
x2(p) := kpπ and x(p) := (x1(p), x2(p)), we have

|g1(x(p))− g1(Aγ (p)x(p))|
= |sin[cos(γ (p))x1(p)− sin(γ (p))x2(p)]

× sin[sin((γ (p))x1(p)+ cos(γ (p))x2(p)]|

=
∣∣∣∣sin

π(u2
p − 2up − 1)

5
sin

π(u2
p + 2up − 1)

5

∣∣∣∣
= sin(π/5) sin(2π/5) > 0.5.

Thus limp→∞ γ (p) = 0, while, for each p = 0, 1, . . .,

sup
x∈R2

|g1(x)− g1(Aγ (p)x)| ≥ |g1(x(p))− g1(Aγ (p)x(p))| > 0.5.

Therefore, condition (2) is not satisfied.
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Examples of Special Invariance Theorems. Here, we consider two examples of spe-
cial invariance theorems for rearrangement-invariant spaces, groups of linear transfor-
mations, and subspaces of algebraic polynomials and entire functions of exponential
type.

Example 2.2. Let �m be a compact set in Rm , F(�m) a Banach rearrangement-
invariant space, and B = Pn,m . It is easy to see that Pn,m is invariant under any compact
group Gm of linear transformations sx = A(s)x + x∗(s) : �m → �m , where A(s) is
an m × m matrix with |det A(s)| = 1, x∗ ∈ Rm . Thus condition (1) of Theorem 2.2
is satisfied. Since polynomials from Pn,m and linear transformations s are continuous
functions, condition (2′) of Theorem 2.2 is satisfied as well. Further, if Ts is defined by
Tsψ(x) = ψ(sx), where ψ ∈ F , s ∈ Gm , x ∈ �m , then condition (3) of Theorem 2.2
is satisfied since F = F(�m) is a Banach rearrangement-invariant space. Furthermore,
Pn,m is a subspace of finite dimension of any Banach rearrangement-invariant space
F(�m) so B satisfies the GCC (see Remark 2.2). Thus, condition (4) of Theorem 2.2
is satisfied. Therefore, Theorem 2.2 implies the following result: for every f ∈ F(�m)

invariant under Gm there exists a polynomial P∗ ∈ Pn,m of best approximation to f
invariant under Gm .

Example 2.3. Let�m = Rm and let Gm be a compact group of linear transformations
sx = A(s)x + x∗(s) : Rm → Rm , where A(s) is an m × m matrix with |det A(s)| = 1
and x∗(s) ∈ Rm , s ∈ Gm . Let V be a convex centrally symmetric (with respect to the
origin) body in Rm satisfying the following.

Transpose Condition (TC). (A(s))T x ∈ V for any s ∈ Gm and any x ∈ V , where
(A(s))T is the transpose of A(s).

We assume that F(Rm) is a Banach rearrangement-invariant space satisfying the
following.

Uniform Extension Condition (UEC). For any increasing sequence of measurable
sets {Mn}∞n=1 with

⋃∞
n=1 Mn = Rm and, for every f ∈ F(Rm),

lim
n→∞‖ f ‖F(Mn) = ‖ f ‖F(Rm ).(2.5)

Then the following result holds.

Corollary 2.1. For every f ∈ F(Rm) invariant under Gm there exists a function
g∗ ∈ BV of best approximation to f invariant under Gm .

To prove the corollary, we need some properties of entire functions of exponential
type.
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Lemma 2.1. Let F(Rm) be a Banach rearrangement-invariant space. Then the follow-
ing statements hold:

(a) If g ∈ BV ∩ F(Rm), then ‖g‖C(Rm ) ≤ C‖g‖F(Rm ), where C is independent of g.
(b) Let gn ∈ BV satisfy the inequalities ‖gn‖C(Rm ) ≤ 1, n = 1, 2, . . . . Then there

exist a subsequence {gnk }∞k=1 and a function g∗ ∈ BV ∩ C(Rm) such that

lim
k→∞

gnk (x) = g∗(x)(2.6)

uniformly on any compact in Rm .
(c) The set BV ∩ F(Rm) is closed in F(Rm).

Proof. Statements (a) and (b) are proved in [21, Theorem 5.2] and [15, Lemma 2],
respectively. Next, let limn→∞ ‖gn − f0‖F(Rm ) = 0, where gn ∈ BV ∩ F(Rm), n =
1, 2, . . ., and f0 ∈ F(Rm). Then using statements (a) and (b), we can find a subsequence
{gnk }∞k=1 and a function g∗ ∈ BV ∩C(Rm) such that (2.6) holds uniformly on any compact
K ⊂ Rm . Then we have

‖( f0 − g∗)χK‖F(Rm ) ≤ lim
k→∞

(‖ f0 − gnk‖F(Rm ) + C‖g∗ − gnk‖C(K )) = 0,

where C depends only on K and F(Rm). Hence f0(x) = g∗(x) a.e. on K and since K
is an arbitrary compact, we obtain that f0(x) = g∗(x) a.e. on Rm . This proves statement
(c) of the lemma.

Proof of Corollary 2.1. We shall show that all conditions of Theorem 2.2 are satisfied.
We first note that B ∩ F(Rm) is a closed subspace of F(Rm), by Lemma 2.1(c). Next,
if sx = A(s)x + x∗(s), then for every g ∈ BV ∩ F(Rm), the function g(s·) is an entire
function and, for each z ∈ Cm and any ε > 0,

|g(sz)| = |g(A(s)z + x∗(s))| ≤ C(ε, g, V, x∗(s)) exp

[
(1+ ε) sup

t∈V
|(t, A(s)z)|

]

= C(ε, g, V, x∗(s)) exp

[
(1+ ε) sup

t∈V
|((A(s))T t, z)|

]

≤ C(ε, g, V, x∗(s)) exp

[
(1+ ε) sup

t∈V
|(t, z)|

]
,

by the TC. In addition, ‖g(s·)‖F(Rm ) = ‖g‖F(Rm ). Thus g(s·) ∈ BV ∩ F(Rm) and
conditions (1) and (3) of Theorem 2.2 are satisfied for B = BV ∩ F(Rm). Moreover, it
is easy to see that condition (2′) of this theorem is satisfied as well.

Further, we introduce a sequence of semi-norms on F(Rm) and study their properties.
Let us set

‖ f ‖F(Rm ),p := ‖ f χVm (p)‖F(Rm ) = ‖ f ‖F(Vm (p)), f ∈ F(Rm)), p = 1, 2, . . . .

Then the UEC implies

sup
p
‖ f ‖F(Rm ),p = ‖ f ‖F(Rm ).(2.7)
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Next, for every sequence gn ∈ BV ∩ F(Rm), n = 1, 2 . . . , with supn ‖gn‖F(Rm ) <∞,
we have by statements (a) and (b) of Lemma 2.1 that there exist a subsequence {gnk }∞k=1
and a function g∗ ∈ BV ∩C(Rm) such that (2.6) holds uniformly on any compact in Rm .
Moreover, by Lemma 2.1(a),

lim
k→∞
‖g∗ − gnk‖F(Rm ),p ≤ C lim

k→∞
‖g∗ − gnk‖C(Vm (p)) = 0, p = 1, 2, . . . ,(2.8)

where C depends only on m, p, and F(Rm).
Relations (2.7) and (2.8) show that the subspace BV ∩ F(Rm) satisfies the GCC (see

Definition 2.1) so condition (4) of Theorem 2.2 is satisfied. Therefore all conditions of
Theorem 2.2 are satisfied and Corollary 2.1 follows from Theorem 2.2.

Remark 2.5. If a Banach rearrangement-invariant space F(Rm) satisfies either of the
following conditions, then the UEC is satisfied.

Fatou Condition [26, Sec. 2.0.3]. For any sequence of functions { fn}∞n=1 satisfying
supn ‖ fn‖F(Rm ) < ∞, the convergence limn→∞ fn(x) = f (x) a.e. implies that f ∈
F(Rm) and ‖ f ‖F(Rm ) ≤ lim infn→∞ ‖ fn‖F(Rm ).

Regularity Condition [26, Sec. 2.0.3]. For any decreasing sequence of measurable
sets {Mn}∞n=1 with

⋂∞
n=1 Mn = ∅, and for every f ∈ F(Rm), limn→∞ ‖ f ‖F(Mn) = 0.

Indeed, let {Mn}∞n=1 be an increasing sequence of measurable sets,
⋃∞

n=1 Mn = Rm .
If F(Rm) satisfies the Regularity Condition, then

‖ f ‖F(Rm ) ≥ lim sup
n→∞

‖ f ‖F(Mn) ≥ lim inf
n→∞ ‖ f ‖F(Mn)(2.9)

≥ lim
n→∞(‖ f ‖F(Rm ) − ‖ f ‖F(Rm−Mn))

= ‖ f ‖F(Rm ).

If F(Rm) satisfies the Fatou Condition, then using the relation limn→∞ f (x)χMn (x) =
f (x) a.e. on Rm , we obtain

‖ f ‖F(Rm ) ≥ lim sup
n→∞

‖ f ‖F(Mn) ≥ lim inf
n→∞ ‖ f ‖F(Mn) ≥ ‖ f ‖F(Rm ).(2.10)

Thus (2.9) and (2.10) imply (2.5).
In particular, the spaces L p(Rm), 1 ≤ p < ∞, satisfy the Regularity Condition,

therefore they satisfy the UEC. The space C(Rm) does not satisfy both conditions.
Nevertheless, it is easy to see that C(Rm) satisfies the UEC.

In addition, note that subspaces BV ∩F(Rm) of F(Rm) provide examples of subspaces
of infinite dimension satisfying the GCC.

3. An Extremal Problem for Trigonometric Polynomials

Though invariance theorems are mostly applied to problems in multivariate approx-
imation theory, the following example shows that they can be efficient in univariate
approximation as well.
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We consider a problem of finding a trigonometric polynomial

Q(x) = a0 +
n∑

l=1

(al cos lx + bl sin lx)

with minimal ‖Q‖F provided that either ak = 1 or bk = 1 where k, 0 ≤ k ≤ n, is a fixed
integer. Here, F is a Banach space of 2π -periodic univariate functions that contains all
trigonometric polynomials Q. We also assume that F is a shift- and symmetry-invariant
space, that is, if f (x) ∈ F , then f (x + γ ) ∈ F , f (−x) ∈ F, and ‖ f (x + γ )‖F =
‖ f (−x)‖F = ‖ f ‖F for all f ∈ F and each γ ∈ [0, 2π).

In the case F = C(T1), the problem was posed by Bernstein [5, pp. 29–31] who
obtained some estimates and asymptotics. A general approach to this problem for
F = C(T1) (even in more general settings) was developed by Rogosinski [36] who,
in particular, reduced it to the case k = 1. The complete constructive solution for the
uniform norm was found by van der Corput and Visser [11] for n/3 < k ≤ n and by
Mulholland [30] for 0 ≤ k ≤ n/3. Rahman [32], Taikov [42], and, more recently, Ash
and the author [3] discussed similar problems in L p-metrics, 1 ≤ p < ∞; see [33,
Secs. 16.1, 16.2] for more generalizations and discussions. The proofs of the mentioned
results are chiefly based on the standard criteria for such extremal problems. In this
section we solve the problem for general F and n/3 < k ≤ n, by using Theorem 2.2. In
addition, we use Theorem 2.2 to reduce the L p(T1)-problem to the case k = 1.

Theorem 3.1. Set N := [(n + k)/2k]. Then the following statements hold:

(a) for 1 ≤ k ≤ n,

min
{Q:ak=1}

‖Q‖F = min
{Q:bk=1}

‖Q‖F

= inf
c2 j−1, 2≤ j≤N

∥∥∥∥∥cos kx −
N∑

j=2

c2 j−1 cos(k(2 j − 1)x)

∥∥∥∥∥
F

;

(b) for n/3 < k ≤ n,

min
{Q:ak=1}

‖Q‖F = min
{Q:bk=1}

‖Q‖F = ‖cos kx‖F ;

(c) in particular, for F = L p(T1), 1 ≤ p ≤ ∞,

min
{Q:ak=1}

‖Q‖L p(T1) = min
{Q:bk=1}

‖Q‖L p(T1)

=



infc2 j−1, 2≤ j≤N ‖cos x−∑N
j=2 c2 j−1 cos((2 j−1)x)‖L p(T1), 1≤k≤n/3,

‖cos x‖L p(T1) =
(

π�(p + 1)

2p−1�(p/2+ 1)2

)1/p

, n/3<k≤n.

Proof. Statement (c) is a direct consequence of statements (a) and (b). To prove state-
ment (a), we first establish the following equalities for 1 ≤ k ≤ n:

min
{Q:ak=1}

‖Q‖F = min
{Q:bk=1}

‖Q‖F = E(cos kx, B, F),(3.1)
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where B is the linear set of all trigonometric polynomials of the form g(x) =∑n
l=0, l �=k(al cos lx + bl sin lx). Indeed, let Q∗(x) = a∗0 +

∑n
l=1(a

∗
l cos lx + b∗l sin lx)

be an extremal polynomial satisfying ‖Q∗‖F = min{Q:ak=1} ‖Q‖F . Then

min
{Q:ak=1}

‖Q‖F = ‖Q∗(x − π/(2k))‖F ≥ min
{Q:bk=1}

‖Q‖F .

The inequality min{Q:ak=1} ‖Q‖F ≤ min{Q:bk=1} ‖Q‖F can be proved similarly. Next, for
some γ ∈ [0, 2π) and some Q1 ∈ B,

‖Q∗‖F = ‖
√

1+ b∗2k cos(kx − γ )− Q1(x)‖F ≥ E(cos kx, B, F),

while the inequality ‖Q∗‖F ≤ E(cos kx, B, F) is trivial. Thus (3.1) holds.
Further, the function f (x) := cos kx is even, 2π/k-periodic, and satisfies the condition

cos(k(2−pπ − x)) = −cos kx , where k = 2pk1 and k1 is odd. Thus f is invariant under
the following three finite groups of operators: T (i)

s : F → F , 1 ≤ i ≤ 3, where

T (1)
s ψ(x) :=ψ(sx), s ∈ G(1)

1 := {e, A1};
T (2)

s ψ(x) :=ψ(sx), s ∈ G(2)
1 := {e, A2, . . . , Ak−1

2 };
T (3)

s ψ(x) :=−ψ(sx), s ∈ G(3)
1 := {e, A3}, ψ ∈ F.

Here, e is the identity transformation and transformations Ai , 1 ≤ i ≤ 3, are given by

A1x := −x, A2x := x + 2π/k, A3x := 2−pπ − x, x ∈ T1.

It is easy to see that all conditions of Theorem 2.2 are satisfied since B is a finite-
dimensional subspace of continuous functions in F and, in addition, B is invariant under
the transformations Ai with ‖T (i)

s ‖F→F = 1, 1 ≤ i ≤ 3. Therefore, by Theorem 2.2,
there exists an even and 2π/k-periodic polynomial g∗(x) = c0+

∑[n/k]
l=2 cl cos(klx) ∈ B

of best approximation to cos kx in the metric of F . In addition, this polynomial satisfies
the condition g∗(2−pπ − x) = −g∗(x), that is,

2c0 +
[n/k]∑
l=2

cl((−1)l + 1) cos(klx) = 0, x ∈ T1.

Hence c2 j = 0, 0 ≤ j ≤ [n/k]/2, so g∗(x) = ∑N
j=2 c2 j−1 cos(k(2 j − 1)x). This

establishes statement (a). In particular, N < 2 if n/3 < k ≤ n. Therefore, g∗(x) = 0
for all x ∈ [0, 2π) if n/3 < k ≤ n. This yields statement (b).

4. Polynomial Approximation of Radial Functions and the Bernstein Constant

An Invariance Theorem. Many radial function such as the Poisson kernel associated
with the upper half-plane, the Gauss–Weierstrass kernel, the Bessel–Macdonald kernel,
and the fundamental function for the iterated Laplace operator, play an important role in
multivariate analysis. The following result shows that polynomials of best approximation
to radial functions are radial as well.
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Theorem 4.1. Let F(Vm) be a Banach rearrangement-invariant space of functions
on the unit ball Vm and let f (x) = ϕ(|x |2) ∈ F(Vm) be a radial function on Vm ,
where ϕ : (0, 1) → R1 is a function of a single variable. Then there exists a poly-
nomial P∗ ∈ Pn,m of best approximation to f of the form P∗(x) = P1(|x |2), where
P1 ∈ P[n/2],1.

The theorem follows immediately from Example 2.2 and the following well-known
characterization of polynomials invariant under D(m) [39, Lemma 4.2.11].

Proposition 4.1. If P ∈ Pn,m is invariant under the rotation group D(m), then P(x) =
P1(|x |2), where P1 ∈ P[n/2],1.

In particular, Theorem 4.1 holds for F(Vm)= L p(Vm), 1≤ p≤∞, where L∞(Vm) :=
C(Vm). In this case, Theorem 4.1 is well known to approximation analysts.

The Bernstein Constant in L1(V2). We shall apply Theorem 4.1 to the multivariate
Bernstein constant Bλ,p,m defined by

Bλ,p,m := lim
n→∞ nλ+m/p E( fλ,m,Pn,m, L p(Vm)),(4.1)

if the limit in (4.1) exists. Here, and in the sequel, fλ,m(x) := |x |λ, x ∈ Rm .
In his celebrated papers [4], [6], Bernstein proved that the limit in (4.1) exists in the

case m = 1, p = ∞, and λ > 0. This result and Theorem 4.1 immediately imply a
multivariate version of the Bernstein asymptotic:

lim
n→∞ nλE( fλ,m,Pn,m,C(Vm)) = Bλ,∞,1, λ > 0,(4.2)

i.e., Bλ,∞,m = Bλ,∞,1, m ≥ 1. Indeed, by Theorem 4.1,

E( fλ,m,Pn,m,C(Vm)) = inf
P1∈P[n/2],1

max
x∈Vm

|(|x |2)λ/2 − P1(|x |2)|(4.3)

= inf
P1∈P[n/2],1

max
t∈[0,1]

|tλ/2 − P1(t)|

= E( fλ,1,P2[n/2],1,C[−1, 1]).

Thus (4.3) and the Bernstein asymptotic imply (4.2).
Nikolskii [31] established an integral representation for Bλ,1,1, λ > −1, and showed

that, for odd λ,

Bλ,1,1 = (8/π)|sin(πλ/2)|�(λ+ 1)
∞∑

k=0

(−1)k(2k + 1)−λ−2.(4.4)

Bernstein [8] later noted that (4.4) holds for all λ > −1. More information on the
Bernstein constants Bλ,p,1 can be found in recent papers by Lubinsky [27] and the
author [22].

In the following theorem, we compute E( fλ,2,Pn,2, L1(V2)) and Bλ,1,2.
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Theorem 4.2.

(a) For −2 < λ < 2[n/2], λ �= 0, 2, . . . ,

E( fλ,2,Pn,2, L1(V2))(4.5)

= 4|sin(πλ/2)|
∫ ∞

0
yλ+1 log

(
(y +

√
y2 + 1)2([n/2]+2) + 1

(y +
√

y2 + 1)2([n/2]+2) − 1

)
dy.

(b) For λ > −2, λ �= 0, 2, . . . ,

Bλ,1,2 = lim
n→∞ nλ+2 E( fλ,2,Pn,2, L1(V2))(4.6)

= 8|sin(πλ/2)|�(λ+ 2)
∞∑

k=0

(2k + 1)−λ−3.

To prove this result, we need a Markov-type theorem on polynomial L1[0, 1]-approx-
imation with the weight t .

Proposition 4.2. Let ϕ : (0, 1) → R1 satisfy the condition ϕ(k+1)(t) �= 0, t ∈ (0, 1).
If �(t) := ϕ(t2) ∈ L1,t [0, 1] with ‖h‖L1,t [0,1] := ∫ 1

0 |h(t)|t dt , then

E(�,P∗2k,1, L1,t [0, 1]) =
∣∣∣∣
∫ 1

0
t�(t) sign U2k+3(t) dt

∣∣∣∣ ,(4.7)

where UN (t) := sin((N + 1) arccos t)/
√

1− t2 ∈ PN ,1 is the Chebyshev polynomial of
the second kind and P∗2k,1 is the set of all even polynomials from P2k,1.

Proof. We first note that by the substitution t2 = (1+ x)/2, we have

E(�,P∗2k,1, L1,t [0, 1]) = ( 1
4 )E(ϕ((1+ ·)/2),Pk,1, L1[−1, 1]).(4.8)

Since (d/dx)k+1[ϕ((1+ x)/2)] �= 0 for x ∈ (−1, 1), we obtain by the classical Markov
theorem [43, Sec. 2.8.11], [1, Sec. 51],

E(ϕ((1+ ·)/2),Pk,1, L1[−1, 1]) =
∣∣∣∣
∫ 1

−1
ϕ((1+ x)/2) sign Uk+1(x) dx

∣∣∣∣(4.9)

= 4

∣∣∣∣
∫ 1

0
t�(t) sign Uk+1(2t2 − 1) dt

∣∣∣∣ .
Taking account of the identity Un(2t2 − 1) = U2n+1(t)/(2t), we arrive at (4.7) from
(4.8) and (4.9).

Combining Theorem 4.1 and Proposition 4.2, we obtain the following bivariate version
of Markov’s theorem for radial functions.
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Proposition 4.3. Letϕ : (0, 1)→ R1 satisfy the conditionϕ([n/2]+1)(t) �= 0, t ∈ (0, 1).
If f (x) = ϕ(|x |2) ∈ L1(V2), then

E( f,Pn,2, L1(V2)) = 2π

∣∣∣∣
∫ 1

0
tϕ(t2) sign U2[n/2]+3(t) dt

∣∣∣∣ .
Proof of Theorem 4.2. Setting ϕ(t) = tλ/2 we have, by Proposition 4.3,

E( fλ,2,Pn,2, L1(V2)) = 2π

∣∣∣∣
∫ 1

0
tλ+1sign U2[n/2]+3(t) dt

∣∣∣∣ .(4.10)

To compute the integral in the right-hand side of (4.10), we shall use the following
relation: ∣∣∣∣

∫ 1

−1
(1− x)µsign UN+1(x) dx

∣∣∣∣(4.11)

= 2|sin(πµ/2)|
π

∫ ∞
1
(u − 1)µ log

(
(u +√u2 − 1)N+2 + 1

(u +√u2 − 1)N+2 − 1

)
du,

N > Reµ > −1.

To prove (4.11), we first note that the Fourier expansions

sign sin(N + 2)t = 4

π

∞∑
k=0

sin(2k + 1)(N + 2)t

2k + 1
,

sin t

u − cos t
= 2

∞∑
k=1

(u −
√

u2 − 1)k sin kt, u > 1,

and the Parseval identity imply∫ 1

−1

sign UN+1(x)

u − x
dx =

∫ π

0

sin t sign sin(N + 2)t

u − cos t
dt(4.12)

= 2 log

(
(u +√u2 − 1)N+2 + 1

(u +√u2 − 1)N+2 − 1

)
, u > 1.

Further, for a complex number µ with −1 < Reµ < 0 and for x ∈ (−1, 1), u > 1, we
have

(1− x)µ = − sin(µπ)

π

∫ ∞
1

(u − 1)µ

u − x
du.(4.13)

Combining (4.12) with (4.13) and using the Fubini theorem we obtain, for−1 < Reµ <
0, ∫ 1

−1
(1− x)µ sign UN+1(x) dx(4.14)

= −2 sin(µπ)

π

∫ ∞
1
(u − 1)µ log

(
(u +√u2 − 1)N+2 + 1

(u +√u2 − 1)N+2 − 1

)
du.
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Since both expressions in the left- and right-hand sides of (4.14) are analytic functions
in µ for N > Reµ > −1, the uniqueness of the analytic extension implies that identity
(4.14) holds for any complex µ with Reµ ∈ (−1, N ). Thus (4.11) follows.

Next, making the substitution x = 1− 2t2 we have, for µ ∈ (−1, N ),∣∣∣∣
∫ 1

−1
(1− x)µ sign UN+1(x) dx

∣∣∣∣ = 2µ+2

∣∣∣∣
∫ 1

0
t2µ+1 sign U2N+3(t) dt

∣∣∣∣ .(4.15)

Finally, setting µ = λ/2, N = [n/2], we obtain, from (4.10), (4.11), and (4.15) for
−2 < λ < 2[n/2],

E( fλ,2,Pn,2, L1(V2)) = 2−1−λ/2π
∣∣∣∣
∫ 1

−1
(1− x)λ/2 sign U[n/2]+1(x) dx

∣∣∣∣
= 2−λ/2|sin(πλ/2)|

∫ ∞
1
(u − 1)λ/2 log

(
(u +√u2 − 1)[n/2]+2 + 1

(u +√u2 − 1)[n/2]+2 − 1

)
du

= 4|sin(πλ/2)|
∫ ∞

0
yλ+1 log

(
(y +

√
y2 + 1)2([n/2]+2) + 1

(y +
√

y2 + 1)2([n/2]+2) − 1

)
dy.

Thus (4.5) follows. Note that (4.5) holds trivially for λ = 0, 2, . . . , 2[n/2]− 2, as well.
(b) We first find the asymptotical behavior of

γM :=
∫ ∞

0
yλ+1 log

(
(y +

√
y2 + 1)M + 1

(y +
√

y2 + 1)M − 1

)
dy

as M →∞. By the substitution v = y +
√

y2 + 1 we have, for M > λ+ 3,

γM = 2−λ−2
∫ ∞

1
v−λ−3(v2 + 1)(v2 − 1)λ+1 log

(
1+ 2

vM − 1

)
dv(4.16)

= 2−λ−2

(∫ 1+M−2/3

1
+
∫ ∞

1+M−2/3

)
= 2−λ−2(I1(M)+ I2(M)).

To estimate I1(M) and I2(M), we need the following elementary inequalities for
y ∈ [0,M1/3], M ≥ 1,

y ≥ (1+ y/M)M ≥ ey−y2/(2M) ≥ ey−1/(2M1/3) ≥ (1− 1/(2M1/1))ey .(4.17)

Then using (4.17) we have, for M ≥ |λ+ 1| + 2,

I2(M) ≤ 2
∫ ∞

1+M−2/3

v−λ−3(v2 + 1)(v2 − 1)λ+1

vM − 1
dv(4.18)

≤ C1(λ)M
2|λ+1|/3 max

v≥1+M−2/3

v|λ+1|+2

vM − 1

≤ C2(λ)M
2|λ+1|/3((1+ M−2/3)M − 1)−1

≤ C3(λ)M
2|λ+1|/3 exp(−M1/3).
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Next, by the substitution v = 1+ y/M , we obtain

I1(M) = M−1
∫ M1/3

0

((1+ y/M)2 + 1)((1+ y/M)2 − 1)λ+1

× log(1+ 2/((1+ y/M)M − 1))

(1+ y/M)λ+3
dy.(4.19)

It is easy to see that uniformly, for y ∈ [0,M1/3],

(1+ y/M)−λ−3((1+ y/M)2 + 1) = 2(1+ O(M−2/3)),(4.20)

((1+ y/M)2 − 1)λ+1 = (2/M)λ+1 yλ+1(1+ O(M−2/3)).(4.21)

In addition, the following asymptotic follows from (4.17):

(1+ y/M)M = ey(1+ O(M−1/3))(4.22)

uniformly for y ∈ [0,M1/3] as M →∞. Thus, it follows from (4.19)–(4.22) that

I1(M) = 2λ+2

Mλ+2

∫ M1/3

0
yλ+1 log

(
ey + 1

ey − 1

)
(1+�M(y)) dy,

where supy∈[0,M1/3] |�M(y)| = o(1) as M →∞. Hence,

I1(M) = (1+ o(1))

(
2

M

)λ+2 ∫ M1/3

0
yλ+1 log

(
ey + 1

ey − 1

)
dy(4.23)

= (1+ o(1))

(
2

M

)λ+2 ∫ ∞
0

yλ+1 log

(
ey + 1

ey − 1

)
dy, M →∞.

Then taking account of the formulas∫ ∞
0

yλ+1 log

(
ey + 1

ey − 1

)
dy = 2

∞∑
k=0

(2k + 1)−1
∫ ∞

0
yλ+1e−(2k+1)y dy(4.24)

= 2�(λ+ 2)
∞∑

k=0

(2k + 1)−λ−3,

we obtain, from (4.16), (4.18), (4.23), and (4.24),

lim
M→∞

Mλ+2γM = 2�(λ+ 2)
∞∑

k=0

(2k + 1)−λ−3.(4.25)

Finally, setting M := 2([n/2]+ 2), we arrive at (4.6) from (4.5) and (4.25).

Remark 4.1. The method of the proof of Theorem 4.2 can also be applied to other
bivariate radial functions such as |x |λ log |x |, λ > −1, and (1+ |x |2)−1.

Remark 4.2. We believe that computation of the constants E( fλ,m,Pn,m, L1(Vm)) and
Bλ,1,m for m > 2 is a difficult problem since the corresponding Markov-type theorems
with the weight |t |m−1, m > 2, do not give explicit expressions for these constants.
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5. Polynomial Approximation on the Unit Ball and
the Unit Sphere and a Braess Problem

Invariance Theorems. We first prove a more general version of Theorem 4.1 and then
discuss polynomial approximation on the (m − 1)-dimensional sphere Sm−1 in Rm ,
m ≥ 2. Throughout this section we shall use the notation (x, a) := ∑m

i=1 xi ai for
x ∈ Rm and a ∈ Rm .

Theorem 5.1. Let F(Vm) be a Banach rearrangement-invariant space of functions on
the unit ball Vm and let f (x) = ϕ(|x |2, (x, a)) ∈ F(Vm), where ϕ : [0, 1]× [−1, 1]→
R1 is a function of two variables and a ∈ Rm , a �= 0, is a fixed vector. Then there exists a
polynomial P∗ ∈ Pn,m of best approximation to f of the form P∗(x) = P2(|x |2, (x, a)),
where P2 is a polynomial of two variables.

To prove the theorem, we need the following representation for polynomials invariant
under the compact group D(m, a), a �= 0, of all rotations with a fixed point a.

Proposition 5.1. If P ∈ Pn,m is invariant under D(m, a), a �= 0, then P(x) =
P2(|x |2, (x, a)), where P2 is a polynomial of two variables.

Proof. We first assume that a = ce1 := c(1, 0, . . . , 0), where c ∈ R1, c �= 0. Then
any rotation about the x1-axis belongs to D(m, ce1), that is, if sx = (x1, x ′2, . . . , x ′m),
where the transformation (x2, . . . , xm)→ (x ′2, . . . , x ′m) is a rotation about the origin of
the (m − 1)-dimensional subspace {x ∈ Rm : x1 = 0} of Rm , then s ∈ D(m, ce1).

Next we note that polynomials xk
1 , k = 0, 1, . . . , are invariant under D(m, ce1).

In addition, since P is invariant under D(m, ce1), we have from the representation
P(x) =∑n

k=0 xn−k
1 Pk(x2, . . . , xm) that polynomials Pk ∈ Pk,m , 0 ≤ k ≤ n, are invariant

under D(m, ce1). Hence, taking into account that Pk are independent of x1, we conclude
that Pk(ρx ′) = Pk(x ′), 0 ≤ k ≤ n, for any x ′ = (x2, . . . , xm) and for every rotation ρ
of the subspace {x ∈ Rm : x1 = 0} of Rm . Then, by Proposition 4.1,

Pk(x2, . . . , xm) =
[k/2]∑
j=0

bj,k(x
2
2 + · · · + x2

m)
j , 0 ≤ k ≤ n.

This implies

P(x) =
∑

0≤k+2l≤n

ck,l x
k
1 (x

2
2 + · · · + x2

m)
l =

∑
0≤k+2l≤n

dk,l x
k
1 |x |2l .

Therefore, the proposition holds for P2(u, v) :=∑0≤k+2l≤n c−kdk,lukvl if a = ce1 and
x1 = c−1(x1, ce1).

We now assume that a is a fixed vector from Rm and P ∈ Pn,m invariant under
D(m, a). Let τ ∈ D(m) be the rotation such that τ(|a|e1) = a. Then the polynomial
Q(x) := P(τ x) of degree at most n is invariant under D(m, |a|e1). Indeed, for any
s ∈ D(m, |a|e1), there exists the only rotation s∗ := τ sτ−1 ∈ D(m, a) such that
s = τ−1s∗τ . Since, for all x ∈ Rm ,

Q(sx) = P(s∗τ x) = P(τ x) = Q(x),
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we conclude that Q is invariant under D(m, |a|e1). Then using the validity of Proposition
5.1 for a = ce1, we obtain that

Q(x) = P(τ x) =
∑

0≤k+2l≤n

d ′k,l x
k
1 |x |2l .

Hence, taking account of the identities

x1 = (x, e1); (τ−1x, e1) = (x, τe1) = |a|−1(x, a); |τ−1x | = |x |,(5.1)

we have P(x) =∑0≤k+2l≤n d ′′k,l(x, a)k |x |2l . Thus the proposition is valid for P2(u, v) :=∑
0≤k+2l≤n d ′′k,lu

kvl .

Proof of Theorem 5.1. Since (sx, sa) = (x, a) for all s ∈ D(m, a), the function
f (x) = ϕ(|x |2, (x, a)) is invariant under Gm = D(m, a) on Vm . Therefore, f ∈
F(Vm)

Gm , where Tsψ(x) = ψ(sx), ψ ∈ F(Vm), s ∈ Gm , x ∈ Vm . Next, |det s| = 1 for
all s ∈ Gm , and we have from Example 2.2 that there exists a polynomial P∗ ∈ Pn,m of
best approximation to f whose restriction to Vm is invariant under D(m, a). Since poly-
nomials P∗(sx) and P∗(x) coincide on the unit ball, we conclude that P∗(sx) = P∗(x)
for every s ∈ D(m, a) and all x ∈ Rm . Then the representation P∗(x) = P2(|x |2, (x, a))
follows from Proposition 5.1.

Approximation on the unit sphere Sm−1 is a popular topic in multivariate approxima-
tion. The Poisson kernel for the unit ball, the spherical Bernoulli function, and some
other kernels [17] have the form of f (x) = ϕ((x, a)), where x ∈ Sm−1 and a ∈ Sm−1.
The following analogue of Theorem 5.1 for Sm−1 shows that there exists a polynomial
of best approximation to f of the same form.

Theorem 5.2. Let F(Sm−1) be a Banach rearrangement-invariant space of functions
on Sm−1 and let f (x) = ϕ((x, a)) ∈ F(Sm−1), where ϕ : [−1, 1] → R1 is a function
of a single variable and a ∈ Sm−1 is a fixed vector. Then there exists a polynomial
P∗ ∈ Pn,m of best approximation to f of the form P∗(x) = P1((x, a)) for x ∈ Sm−1,
where P1 ∈ Pn,1.

To prove the theorem, we need a spherical analogue of Proposition 5.1.

Proposition 5.2. If the restriction PSm−1 of a polynomial P ∈ Pn,m to Sm−1 is invariant
under D(m, a), a ∈ Sm−1, then P(x) = P1((x, a)), where P1 ∈ Pn,1 and x ∈ Sm−1.

It seems plausible that this proposition is a corollary of Proposition 5.1. However, we
could not prove it. That is why we give the direct proof of the statement.

Proof of Proposition 5.2. We first assume that a = e1 = (1, 0, . . . , 0). Since any rota-
tion about the x1-axis belongs to D(m, e1), PSm−1 is constant on any (m−2)-dimensional
sphere Sm−2,λ := Sm−1 ∩ �λ where �λ := {x ∈ Rm : x1 = λ}, −1 ≤ λ ≤ 1
(for m = 2, Sm−2,λ consists of two points on S1 symmetric about the x1-axis). There-
fore, PSm−1 depends only on x1, and P(x1, x2, . . . , xm) = P(x1,

√
1− x2

1 , 0, . . . , 0)
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for x ∈ Sm−1. Since the transformation (x1, x2, x3, . . . , xm) → (x1,−x2, x3, . . . , xm)

belongs to D(m, e1), PSm−1 is even in x2. Hence P(x1,
√

1− x2
1 , 0, . . . , 0) = P1(x1),

x ∈ Sm−1, where P1 ∈ Pn,1. Therefore, Proposition 5.2 is established for a = e1.
Let now a ∈ Sm−1 be a fixed point and let τ ∈ D(m) be the rotation such that τe1 = a.

Then the function PSm−1(τ x) is invariant under D(m, e1) (see the proof of Proposition
5.1). Therefore, P(τ x) = P1(x1) for P1 ∈ Pn,1, x ∈ Sm−1, and it follows from (5.1) that
P(x) = P1((x, a)), x ∈ Sm−1. This proves the proposition.

Proof of Theorem 5.2. The function f is invariant under Gm = D(m, a) on Sm−1.
Therefore f ∈ F(Sm−1)Gm , where Tsψ(x) = ψ(sx), ψ ∈ F(Sm−1), s ∈ Gm , x ∈ Sm−1.
Since |det s| = 1 for all s ∈ Gm , Example 2.2 implies that there exists a polynomial
P∗ ∈ Pn,m of best approximation to f whose restriction to Sm−1 is invariant under
D(m, a). Applying Proposition 5.2 to P = P∗, we obtain that P∗(x) = P1((x, a)),
x ∈ Sm−1.

Remark 5.1. A weaker version of Theorem 5.2 and its applications in the case
F(Sm−1) = L p(Sm−1), 1 ≤ p ≤ ∞, was discussed in [17].

A Braess Problem. We apply Theorem 5.2 to the following problem posed by Braess
[10]. Let a ∈ Rm be a fixed vector with r := |a| ≥ 0 and let

fλ,a,m(x) := |x − a|−λ, flog,a,m(x) := log |x − a|, x ∈ Rm .

In the univariate case, the asymptotic behavior of the error of best polynomial ap-
proximation of these functions has been studied by Bernstein. In particular, he proved
for r > 1 the following asymptotics as n → ∞ [5, Sec. 2.5, eqs. (3.2) and (44bis)],
Akhiezer [1, p. 325]:

E( fλ,a,1,Pn,1,C[−1, 1]) = nλ−1(r −√r2 − 1)n(1+ o(1))

�(λ)(r2 − 1)λ/2+1/2
, λ ∈ R1,(5.2)

E( flog,a,1,Pn,1,C[−1, 1]) = n−1(r −√r2 − 1)n(1+ o(1))

(r2 − 1)1/2
,(5.3)

and extended (5.2) to 0 ≤ r ≤ 1 and λ < 0, λ �= −2,−4, . . . , [6], [7],

E( fλ,a,1,Pn,1,C[−1, 1]) = (1− r2)|λ|/2 E( fλ,0,1,Pn,1,C[−1, 1])(1+ o(1))(5.4)

= n−|λ|(1− r2)|λ|/2 B|λ|,∞,1(1+ o(1)),

0 ≤ r < 1,

E( fλ,a,1,Pn,1,C[−1, 1]) = 2|λ|E( f2λ,0,1,P2n,1,C[−1, 1])(1+ o(1))(5.5)

= n−2|λ|2−|λ|B2|λ|,∞,1(1+ o(1)), r = 1,

where Bµ,∞,1 is the Bernstein constant defined in (4.1). Note that extensions of (5.4) to
more general sets were obtained by Vasiliev [46] and Totik [44].
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Recently, Braess [10] investigated the behavior of E( fλ,a,2,Pn,2,C(V2)) for λ > 0
and r > 1 in connection with some numerical problems of elliptic equations. Using
the ingenious Newman trick of transition from a univariate complex approximation to a
bivariate real one, he proved the following estimates for λ > 0 and r > 1:

C1(r, λ)n
−1r−n ≤ E( fλ,a,2,Pn,2,C(V2)) ≤ C2(r, λ)n

λ+1r−n,(5.6)

where the lower estimate was established under the conditions r ≥ 3 or 0 < λ < 2. In
addition, he mentioned that the similar estimates were valid for E( flog,a,2,Pn,2,C(V2)).
In his paper Braess states that it is an open problem whether the lower bound in (5.6)
also holds if r gets closer to 1 and if λ is large.

Here we show that better estimates than (5.6) are valid for all r > 1 and all λ ∈
R1, λ �= 0,−2, . . . . Moreover, we extend them to m-variate approximation and to the
functions fλ,a,m and flog,a,m , m ≥ 2. In addition, we establish precise estimates for
E( fλ,a,m,Pn,m,C(Vm)) in the case 0 ≤ r ≤ 1, λ < 0, λ �= −2,−4, . . ., which for
r = 1, m ≥ 2, are surprisingly different compared with (5.5).

Our proof is based on orthogonal expansions, invariance of a polynomial of best
approximation on the unit sphere, and relations (5.2)–(5.5).

Theorem 5.3.

(a) For any a ∈ Rm with |a| = r > 1 and any λ ∈ R1, λ �= 0,−2, . . . , the following
estimates hold:

C3(r, λ)n
λ/2−1r−n ≤ E( fλ,a,m,Pn,m,C(Vm)) ≤ C4(r, λ)n

µ−1r−n,(5.7)

C5(r)n
−1r−n ≤ E( flog,a,m,Pn,m,C(Vm)) ≤ C6(r)n

−1r−n,(5.8)

where

µ :=
{
λ, λ > 0,

λ/2, λ < 0.
(5.9)

In addition,

lim
n→∞(E( fλ,a,m,Pn,m,C(Vm)))

1/n = lim
n→∞(E( flog,a,m,Pn,m,C(Vm)))

1/n(5.10)

= r−1.

(b) For any a ∈ Rm with |a| = r ∈ (0, 1] and any λ < 0, λ �= −2,−4, . . . ,

C7(r, λ)n
−|λ| ≤ E( fλ,a,m,Pn,m,C(Vm)) ≤ C8(r, λ)n

−|λ|.(5.11)

In addition,

lim
n→∞ n|λ|E( fλ,0,m,Pn,m,C(Vm)) = B|λ|,∞,1.(5.12)

Proof. We first note that (5.10) immediately follows from (5.7) and (5.8) while (5.12)
is a direct consequence of (4.2). Next, we prove upper and lower estimates in (5.7), (5.8),
and (5.11).
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Upper Estimates. We first assume that r > 1. Using generating function relations for
the Gegenbauer polynomials C (τ )

k and the Chebyshev polynomials Tk of the first kind
(see [40, eqs. (4.7.23) and (4.7.25)]) we have, for x ∈ Vm and λ ∈ R1, λ �= 0,−2, . . . ,

|x − a|−λ = r−λ
∞∑

k=0

C (λ/2)
k

(
(x, a)

r |x |
)( |x |

r

)k

,(5.13)

−log |x − a| = −log r + 2
∞∑

k=1

k−1Tk

(
(x, a)

r |x |
)( |x |

r

)k

.(5.14)

Next, it is easy to see that if a polynomial Pk ∈ Pk,1 is even for an even k and odd for an
odd k, then the function Pk((x, a)/r |x |)(|x |/r)k belongs to Pk,m , k = 0, 1, . . . . There-
fore, the nth partial sums of the series in (5.13) and (5.14) are polynomials from Pn,m .

Then, taking account of the estimate [40, Sec. 7.33(1)],

‖C (λ/2)
k ‖C[−1,1] ≤ C(λ)kµ−1, k = 0, 1, . . . ,

where µ is defined by (5.9) we get, from (5.13),

E( fλ,a,m,Pn,m,C(Vm)) ≤ r−λ max
|x |≤1

∣∣∣∣∣
∞∑

k=n+1

C (λ/2)
k

(
(x, a)

r |x |
)( |x |

r

)k
∣∣∣∣∣

≤ C(r, λ)
∞∑

k=n+1

kµ−1r−k ≤ C4(r, λ)n
µ−1r−n.

In addition, since ‖Tk‖C[−1,1] = 1 we have, from (5.14),

E( flog,a,m,Pn,m,C(Vm)) ≤ 2 max
|x |≤1

∣∣∣∣∣
∞∑

k=n+1

k−1Tk

(
(x, a)

r |x |
)( |x |

r

)k
∣∣∣∣∣

≤ 2
∞∑

k=n+1

k−1r−k ≤ C6(r, λ)n
−1r−n.

Thus the upper bounds in (5.7) and (5.8) are established.
Further, let 0 < r ≤ 1, λ < 0, λ �= −2,−4, . . . . Then, by (5.12),

E( fλ,a,m,Pn,m,C(Vm)) = E( fλ,0,m,Pn,m,C(Vm − a))

≤ (1+ r)|λ|E( fλ,0,m,Pn,m,C(Vm))

≤ C8(r, λ)n
−|λ|.

This establishes the upper estimate in (5.11).

Lower Estimates. We first note that the restriction of any polynomial from Pn,m to
the line L := {x ∈ Rm : x = ta/r , t ∈ R1}, passing through the origin and a, is
a polynomial in a single variable t ∈ R1 of degree at most n, and the restriction of
fλ,a,m(x) to L is fλ,r,1(t). Hence,

E( fλ,a,m,Pn,m,C(Vm)) ≥ E( fλ,r,1,Pn,1,C[−1, 1]).(5.15)
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Therefore, the lower estimate in (5.11), in the case 0 < r < 1, λ < 0, λ �= −2,−4, . . .,
follows from (5.15) and (5.4).

All other lower estimates are based on the following result.

Proposition 5.3. For any a ∈ Rm with |a| = r ≥ 1 and everyϕ ∈ C[(r−1)2, (r+1)2],

E(ϕ(|x − a|2),Pn,m,C(Vm)) ≥ E(ϕ,Pn,1,C[(r − 1)2, (r + 1)2]).(5.16)

Proof. The restriction of ϕ(|x − a|2) to the unit sphere Sm−1 is the function ψ(x) =
ϕ(1 − 2r(x, b) + r2), where x ∈ Sm−1 and b = a/|a| ∈ Sm−1. Then, by Theorem 5.2,
there exists a polynomial P1 ∈ Pn,1 such that

E(ψ,Pn,m,C(Sm−1)) = max
x∈Sm−1

|ϕ(1− 2r(x, b)+ r2)− P1((x, b))|(5.17)

= max
y∈[(r−1)2,(r+1)2]

∣∣∣∣ϕ(y)− P1

(
1+ r2 − y

2r

)∣∣∣∣
≥ E(ϕ,Pn,1,C[(r − 1)2, (r + 1)2]).

Now (5.16) follows from (5.17) and a trivial inequality

E(ϕ(|x − a|2),Pn,m,C(Vm)) ≥ E(ψ,Pn,m,C(Sm−1)).

This proves the proposition.

Now we are in a position to complete the proof of Theorem 5.3. First let r > 1. Then,
by Proposition 5.3,

E( fλ,a,m,Pn,m,C(Vm)) ≥ E(y−λ/2,Pn,1,C[(r − 1)2, (r + 1)2])(5.18)

= (2r)−λ/2 E

((
1+ r2

2r
− t

)−λ/2
,Pn,1,C[−1, 1]

)
,

λ ∈ R1,

(5.19)
E( flog,a,m,Pn,m,C(Vm)) ≥ ( 1

2 )E(log y,Pn,1,C[(r − 1)2, (r + 1)2])

= ( 1
2 )E

(
log

(
1+ r2

2r
− t

)
,Pn,1,C[−1, 1]

)
.

Thus the lower estimates in (5.7) and (5.8) for r > 1 and λ ∈ R1, λ �= 0,−2, . . ., follow
from relations (5.2), (5.18) and (5.3), (5.19), respectively.

Next, let r = 1 and λ < 0, λ �= −2,−4, . . . . Then, by Proposition 5.3,

E( fλ,a,m,Pn,m,C(Vm)) ≥ 2−λE(y−λ/2,Pn,1,C[0, 4]) = E(y−λ/2,Pn,1,C[0, 1])

= E(|t |−λ,P2n,1,C[−1, 1]) ≥ C7(1, λ)n
−|λ|.

This establishes the lower estimate in (5.11) for r = 1. Therefore, the proof of Theo-
rem 5.3 is completed.
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Remark 5.2. Note that for a �= 0, fλ,a,m is a function of |x |2 and (x, a). Then, by
Theorem 5.1, there is a polynomial P∗ ∈ Pn,m of best approximation to fλ,a,m in C(Vm)

of the form P∗(x) = P2(|x |2, (x, a)), where P2 is a bivariate polynomial. Therefore, for
r �= 0,

E( fλ,a,m,Pn,m,C(Vm))= E(ψλ,r ,Pn,2,C([0, 1]× [−1, 1]))=E( fλ,a∗,2,Pn,2,C(V2)),

where a∗ := (0, r) ∈ R2 and ψλ,r (u, v) := (u2 − 2rv + r2)−λ/2. This shows that the
m-variate problem can be reduced to the bivariate Braess one. Nevertheless, the problem
of estimating E(ψλ,r ,Pn,2,C([0, 1] × [−1, 1])) appears to be difficult, and we use a
different approach to the proof of Theorem 5.3.

Remark 5.3. Theorem 5.3 establishes the exact order of decay of E( fλ,a,m,Pn,m,

C(Vm)) for λ < 0,

E( fλ,a,m,Pn,m,C(Vm)) ∼
{

nλ/2−1r−n, r > 1,
n−|λ|, 0 ≤ r ≤ 1.

In addition,

E( flog,a,m,Pn,m,C(Vm)) ∼ n−1r−n, r > 1.

The problem, whether multivariate analogues of asymptotics (5.2), (5.3), and (5.4) are
valid, is open.

6. Approximation of Radial Functions by Entire Functions of Exponential Type

An Invariance Theorem. The following result shows that entire functions of best
approximation to radial functions are radial as well.

Theorem 6.1. Let F(Rm) be a Banach rearrangement-invariant space of functions
on Rm , satisfying the UEC from Example 2.3. If f (x) = ϕ(|x |) ∈ F(Rm), where
ϕ : (0,∞)→ R1 is a function of a single variable, then there exists an entire function
g∗ ∈ BVm (σ ) ∩ F(Rm) of best approximation to f of the form g∗(x) = g1(|x |), where
g1 ∈ Bσ is an even function of a single variable.

The proof is based on Example 2.3 and on the following analogue of Proposition 4.1.

Proposition 6.1. If the restriction of g ∈ BVm (σ ) to Rm is invariant under the rotation
group D(m), then g∗(x) = g1(|x |), where g1 ∈ Bσ is an even function of a single
variable.

Proof. Writing g(x) =∑∞k=0 Pk(x), where Pk ∈ Pk,m is a k-homogeneous component
of the Taylor expansion for g, k = 0, 1 . . ., we have that for any ε > 0, every s ∈ D(m),
and each x ∈ Rm , the following identities hold:

∞∑
k=0

εk Pk(x) = g(εx) = g(ε(sx)) =
∞∑

k=0

εk Pk(sx).
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Hence Pk(sx) = Pk(x), k = 0, 1, . . ., for every s ∈ D(m), and each x ∈ Rm . Therefore,
by Proposition 4.1, Pk(x) = 0 for an odd k and Pk(x) = ck |x |k for an even k, k =
0, 1, . . ., x ∈ Rm . This implies that g(x) = ∑∞p=0 c2p|x |2p. It remains to show that the
function g1(u) := ∑∞p=0 c2pu2p belongs to Bσ . Indeed, since g ∈ BVm (σ ) we have, for
any ε > 0 and any z = (z1, . . . , zm) ∈ Cm ,

|g(z)| =
∣∣∣∣∣
∞∑

p=0

c2p

(
m∑

j=1

z2
j

)p∣∣∣∣∣ ≤ C(ε, g) exp

(
(1+ ε) sup

t∈Vm (σ )

∣∣∣∣∣
m∑

j=1

tj z j

∣∣∣∣∣
)

= C(ε, g) exp

(
(1+ ε)σ

(
m∑

j=1

|zj |2
)1/2 )

.

Hence, setting z2 = · · · = zm = 0 we have, for any z1 ∈ C1,

|g1(z1)| =
∣∣∣∣∣
∞∑

p=0

c2pz2p
1

∣∣∣∣∣ ≤ C(ε, g) exp((1+ ε)σ |z1|).

Thus g1 ∈ Bσ .

Proof of Theorem 6.1. The function f is invariant under the compact group Gm =
D(m). Therefore, f ∈ F(Rm)Gm , where Tsψ(x) = ψ(sx), ψ ∈ F(Rm), s ∈ Gm ,
x ∈ Rm . Next, V = Vm(σ ) satisfies the Transpose Condition from Example 2.3 since
for any orthogonal matrix s ∈ D(m) and every x ∈ Vm(σ ), sT x = s−1x ∈ Vm(σ ).
Thus, all the conditions of Example 2.3 are satisfied. Then there exists an entire function
g∗ ∈ BVm (σ ) ∩ F(Rm) of best approximation to f whose restriction to Rm is invariant
under D(m). Finally, applying Proposition 6.1 to g = g∗, we establish Theorem 6.1.

Remark 6.1. Theorem 6.1 holds for F(Rm) = C(Rm) and F(Rm) = L p(Rm), 1 ≤
p <∞, since these spaces satisfy the UEC (see Remark 2.5).

Approximation of |x |λ in L1(R2). We shall apply Theorem 6.1 to approximation of
fλ(x) := |x |λ, x ∈ R2, by functions from BV2(σ ) in the metric of L1(R2).

Theorem 6.2. For λ > 0, λ �= 2, 4, . . .,

E( fλ, BV2(σ ), L1(R2)) = 8|sin(πλ/2)|�(λ+ 2)σ−λ−2
∞∑

k=0

(2k + 1)−λ−3.(6.1)

Proof. Step 1. Since fλ /∈ L1(R2), we first prove that for every ε > 0 there exists a
radial function g(x) = gε(|x |) ∈ BV2(ε), where gε ∈ Bε is even, such that the following
inequalities hold:

|gε(|x |)| ≤ C(1+ |x |2)N , x ∈ R2,(6.2)

| |x |λ − gε(|x |)| ≤ C(1+ |x |2)−2, x ∈ R2,(6.3)
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where N ≥ 0 is an integer. To prove it, we introduce the function (0 < a < b),

ψa,b(x) :=




0, |x | ≤ a,

c
∫ |x |

a exp(−(u − a)−2(b − u)−2) du, a < |x | < b,

1, |x | ≥ b,

where c := (
∫ b

a exp(−(u − a)−2(b − u)−2) du)−1. Then ψε/2,ε is a radial infinitely
differentiable function on R2 and ψε/2,ε(x) = 0 for |x | ≤ ε/2 and ψε/2,ε(x) = 1 for
|x | ≥ ε.

Next we note that the Fourier transform of the tempered distribution fλ for m = 2 and
λ > 0 is

F( fλ)(y) = π2λ+2(�(λ/2+ 1)/�(−λ/2))|y|−λ−2, y ∈ R2,

(see [25, Sec. 2.3.3]). Then the function hλ := ψε/2,εF( fλ) satisfies the conditions

∂ l1+l2 hλ(x)

∂xl1
1 ∂xl2

2

∈ L1(R2), 0 ≤ l1 + l2 ≤ 4.

Therefore, the inverse Fourier transform F−1(hλ) satisfies the inequality

|F−1(hλ)(x)| ≤ C(1+ |x |2)−2, x ∈ R2.(6.4)

Further, the function H := F( fλ)− hλ is a tempered distribution with the support in
V2(ε). Then by the generalized Paley–Wiener theorem [37, Theorem 7.23], the function
g := F−1(H) belongs to BV2(ε) and has polynomial growth on R2, that is,

|g(x)| ≤ C(1+ |x |2)N(6.5)

for some integer N ≥ 0. Moreover, g is invariant under D(2). To prove this statement,
we use the following fact [25, Sec. 2.3.1]: if a tempered distribution f of m variables is
invariant under D(m), that is, f satisfies the condition f (sx) = f (x) for all s ∈ D(m),
then F( f ) and F−1( f ) are invariant under D(m). Hence, the tempered distributions
F( fλ), hλ, and H are invariant under D(2), consequently, g = F−1(H) is invariant
under D(2) as well.

Next, by Proposition 6.1, g(x) = gε(|x |), where gε ∈ Bε is an even function. Since
F−1(hλ)(x) = fλ(x)− gε(|x |), inequalities (6.2) and (6.3) follow from (6.5) and (6.4),
respectively.

In particular, (6.3) implies that

‖ fλ − gε(| · |)‖L1(R2) <∞(6.6)

and, in addition,

|t (|t |λ − gε(t))| ≤ C(1+ |t |2)−1, t ∈ R1.(6.7)

Step 2. Since, by (6.6), fλ(x) − gε(|x |) ∈ L1(R2), we can apply Theorem 6.1 to
f (x) = fλ(x) − gε(|x |) and F(R2) = L1(R2). Then there exists an even function
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gσ ∈ Bσ such that, for σ > ε,

E( fλ, BV2(σ ), L1(R2)) = E( fλ − gε(| · |), BV2(σ ), L1(R2))(6.8)

= ‖ fλ − gε(| · |)− gσ (| · |)‖L1(R2)

= πE(|t |λ − gε(t), Bσ , L1,t (R1)),

where ‖h‖L1,t (R1) := ∫R1 |th(t)| dt .
This shows that a bivariate approximation problem is reduced to a univariate approx-

imation problem in a weighted L1-space. To solve the latter one, we first establish the
following equality:

E(|t |λ − gε(t), Bσ , L1,t (R1)) = E(t (|t |λ − gε(t)), Bσ , L1(R1)),(6.9)

where t (|t |λ − gε(t)) ∈ L1(R1), by (6.7). Indeed, the inequality

E(|t |λ − gε(t), Bσ , L1,t (R1)) ≥ E(t (|t |λ − gε(t)), Bσ , L1(R1))(6.10)

is trivial. Next, let Gσ ∈ Bσ satisfy the equality

E(t (|t |λ − gε(t)), Bσ , L1(R1)) = ‖t (|t |λ − gε(t))− Gσ‖L1(R1).

Without loss of generality we can assume that Gσ is an odd function. Then G∗σ (t) :=
Gσ (t)/t ∈ Bσ and we have

E(t (|t |λ − gε(t)), Bσ , L1(R1)) = ‖ |t |λ − gε(t)− G∗σ‖L1,t (R1)(6.11)

≥ E(|t |λ − gε(t), Bσ , L1,t (R1)).

Thus (6.10) and (6.11) imply (6.9).

Step 3. Next we find the Fourier sin-transform of the function t |t |λ − tgε(t), which is
integrable on R1 by (6.7). Namely, we prove that, for |y| > ε,

�(y) :=
∫

R1
(t |t |λ − tgε(t)) sin t y dt(6.12)

= −2 sin(πλ/2)�(λ+ 2)|y|−λ−2 sign y.

Let S(R1) be the Schwartz class of all rapidly decreasing functions on R1. Then
denoting the right-hand side of (6.12) by ϕ(y) we have, for any h ∈ S(R1) with its
support outside [−ε, ε],∫

R1
(t |t |λ − tgε(t))F(h)(t) dt =

∫
R1

t |t |λF(h)(t) dt −
∫

R1
tgε(t)F(h)(t) dt,(6.13)

where the second integral in the right-hand side of (6.13) exists by (6.2). Next, again
using the generalized Paley–Wiener theorem [37, Theorem 7.23], we have∫

R1
tgε(t)F(h)(t) dt = 0.(6.14)
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Further, it is known [25, eq. (2.3.13)] that∫
R1

t |t |λF(h)(t) dt =
∫

R1
ϕ(t)h(t) dt =

∫
|t |>ε

ϕ(t)h(t) dt.(6.15)

Thus (6.13), (6.14), and (6.15) imply the equality∫
R1
(t |t |λ − tgε(t))F(h)(t) dt =

∫
|t |>ε

ϕ(t)h(t) dt.(6.16)

Finally, choosing h in (6.16) as a peak delta-like function from S(R1), supported in the
interval [y − δ, y + δ] with 0 < δ < |y| − ε and letting δ→ 0, we arrive at (6.12).

Step 4. Finally, we prove (6.1). It follows from (6.7) and (6.12) that the function
ψ(t) := −sign(sin(πλ/2))(t |t |λ − tgε(t)) satisfies the following conditions of the Sz.-
Nagy criterion [41], [1, Sec. 88] for approximation in L1(R1) by entire functions of
exponential type: ψ is an odd function, satisfying |ψ(t)| ≤ C(1 + t2)−1 by (6.7), and
the following inequalities hold for its sin-transform �1(y) := −sign(sin(πλ/2))�(y),
where � is defined in (6.12),

�1(y) > 0, �′1(y) ≤ 0, �′′1(y) ≥ 0, y > ε.

Then, for σ > ε,

E(t (|t |λ − gε(t)), Bσ , L1(R1)) = 4

π

∞∑
k=0

�1((2k + 1)σ )

2k + 1
(6.17)

= (8/π)|sin(πλ/2)|�(λ+ 2)σ−λ−2

×
∞∑

k=0

(2k + 1)−λ−3.

Thus, (6.1) follows from (6.8), (6.9), and (6.17).

Remark 6.2. Comparing (4.6) and (6.1), we see that the following relation holds:

lim
n→∞ nλ+2 E(|x |λ,Pn,2, L1(V2)) = E(|x |λ, BV2(1), L1(R2)), λ > 0.(6.18)

Actually, (6.18) is a special case of more general relations (the so-called limit theorems)
of the form

lim
n→∞ E( f,Pn,m, L p(nVm)) = E( f, BVm (1), L p(Rm)), 1 ≤ p <∞,(6.19)

which are valid for all measurable functions f of polynomial growth on Rm provided
that the right-hand side of (6.19) is finite (see [16], [20]). Note that a version of (6.19)
for the uniform metric holds as well [16], [20].

Remark 6.3. A general approach to Markov-type theorems in L1(Rm), m ≥ 2, for
radial integrable functions was developed in [18], [19]. Note that the Sz.-Nagy criterion
cannot be applied for m > 2, and computation of E(|x |λ,Pn,m, L1(Vm)) appears to be
a difficult problem for m > 2.
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7. Approximation in Higher Dimensions

Here we discuss approximation in higher dimensions when a function f (x), x ∈ �m ,
depends only on variables x1, . . . , xk , 1 ≤ k < m, m ≥ 2. In this section we shall use
the following notation: for a vector σ = (σ1, . . . , σm) with positive coordinates we set
�k(σ) := {x ∈ Rk : |xj | ≤ σj , 1 ≤ j ≤ k} to be a rectangular parallelepiped in Rk ,
1 ≤ k ≤ m.

Theorem 7.1. If f ∈ C(Rm) depends only on variables x1, . . . , xk , 1 ≤ k < m,
m ≥ 2, then there exists an entire function g∗ ∈ B�m (σ) ∩ C(Rm) such that it depends
only on x1, . . . , xk and

E( f, B�m (σ) ∩ C(Rm),C(Rm)) = E( f, B�k (σ) ∩ C(Rk),C(Rk))(7.1)

= ‖ f − g∗‖C(Rk ).

Note that a function f ∈ C(Rm) depends only on variables x1, . . . , xk , 1 ≤ k < m,
m ≥ 2, if and only if f is invariant under the group Gm of all shift transformations s of
the form sx = x + (0, . . . , 0, τk+1, . . . , τm), where τj ∈ R1, k + 1 ≤ j ≤ m. Therefore,
f ∈ C(Rm)Gm for Tsψ(x) = ψ(sx), ψ ∈ C(Rm), s ∈ Gm , x ∈ Rm . However, we
cannot use invariance theorems from Section 2 because Gm is a locally compact group.
That is why we give the direct proof of the statement.

Proof of Theorem 7.1. We first note that there exists a function g0 ∈ B�m (σ)∩C(Rm)

of best approximation to f . This follows from Proposition 2.2 and from the fact that
B�m (σ) ∩ C(Rm) satisfies the GCC (see the proof of Corollary 2.1 and Remark 2.5).

Next, let us consider a sequence of functions

gn(x) := (2Mn)
k−m

∫ Mn

−Mn

. . .

∫ Mn

−Mn

g0(x + τ)dτk+1 . . . dτm, n = 1, 2, . . . ,

where {Mn}∞n=1 is an increasing sequence of positive numbers with limn→∞ Mn = ∞,
and τ ∈ Rm is an arbitrary vector of the form τ = (0, . . . , 0, τk+1, . . . , τm).

Then supn ‖gn‖C(Rm ) ≤ ‖g0‖C(Rm ) and gn ∈ B�m (σ), n = 1, 2, . . . . Next, using
Lemma 2.1(b), we can assume without loss of generality that there exists g∗ ∈ B�m (σ) ∩
C(Rm) such that

lim
n→∞ gn(x) = g∗(x)(7.2)

uniformly on any compact in Rm . Further, by (7.2), for an arbitrary vector
y = (0, . . . , 0, yk+1, . . . , ym) ∈ Rm and for any compact K ⊂ Rm we have

max
x∈K
|g∗(x + y)− g∗(x)| = lim

n→∞max
x∈K
|gn(x + y)− gn(x)|

≤ ‖g0‖C(Rm )(2Mn)
k−m Volm−k((QMn\(QMn + y′)) ∪ ((QMn + y′)\QMn ))

= 0.

Here, y′ := (yk+1, . . . , ym) ∈ Rm−k and Qa := {x ∈ Rm−k : |xi | ≤ a, k + 1 ≤ i ≤ m}
is a cube in Rm−k . Therefore, g∗ depends only on x1, . . . , xk .
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Furthermore, it follows from (7.2) that, for any compact K ∈ Rm ,

max
x∈K
| f (x)− g∗(x)| = lim

n→∞max
x∈K
| f (x)− gn(x)|

≤ max
x∈K
| f (x)− g0(x)| = E( f, B�m (σ) ∩ C(Rm),C(Rm)).

Therefore, g∗ ∈ B�m (σ) ∩C(Rm) is a function of best approximation to f . Since, by the
definition, g∗ ∈ B�m (σ) if and only if, for any z ∈ Cm and any ε > 0,

|g∗(z1, . . . , zm)| ≤ C(ε, g∗) exp

(
(1+ ε)

m∑
j=1

σj |zj |
)
,

we have

|g∗(z1, . . . , zm)| = |g∗(z1, . . . , zk, 0, . . . , 0)| ≤ C(ε, g∗) exp

(
(1+ ε)

k∑
j=1

σj |zj |
)
.

Hence the restriction g∗Rk of g∗ to Rk belongs to B�k (σ) ∩ C(Rk). In addition, it is easy
to see that g∗Rk ∈ B�k (σ) ∩C(Rk) is the function of best approximation to fRk in C(Rk).
Consequently,

E( f, B�k (σ) ∩ C(Rk),C(Rk)) = ‖ f − g∗‖C(Rk ) = ‖ f − g∗‖C(Rm )

= E( f, B�m (σ) ∩ C(Rm),C(Rm)).

This yields (7.1).

Remark 7.1. A similar invariance result for approximation of continuous functions
on Tm by trigonometric polynomials from T�m (n) follows from Theorem 2.2. A nonpe-
riodic analogue of this result for polynomial approximation on the m-dimensional unit
cube follows directly from the periodic case by the standard substitution xi = cos ti ,
1 ≤ i ≤ m.

Acknowledgment. The author thanks Professor Franz Peherstorfer for providing ref-
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